\(\newcommand{\footnotename}{footnote}\)
\(\def \LWRfootnote {1}\)
\(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\)
\(\let \LWRorighspace \hspace \)
\(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\)
\(\newcommand {\mathnormal }[1]{{#1}}\)
\(\newcommand \ensuremath [1]{#1}\)
\(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \)
\(\newcommand {\setlength }[2]{}\)
\(\newcommand {\addtolength }[2]{}\)
\(\newcommand {\setcounter }[2]{}\)
\(\newcommand {\addtocounter }[2]{}\)
\(\newcommand {\arabic }[1]{}\)
\(\newcommand {\number }[1]{}\)
\(\newcommand {\noalign }[1]{\text {#1}\notag \\}\)
\(\newcommand {\cline }[1]{}\)
\(\newcommand {\directlua }[1]{\text {(directlua)}}\)
\(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\)
\(\newcommand {\protect }{}\)
\(\def \LWRabsorbnumber #1 {}\)
\(\def \LWRabsorbquotenumber "#1 {}\)
\(\newcommand {\LWRabsorboption }[1][]{}\)
\(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\)
\(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\)
\(\def \mathcode #1={\mathchar }\)
\(\let \delcode \mathcode \)
\(\let \delimiter \mathchar \)
\(\def \oe {\unicode {x0153}}\)
\(\def \OE {\unicode {x0152}}\)
\(\def \ae {\unicode {x00E6}}\)
\(\def \AE {\unicode {x00C6}}\)
\(\def \aa {\unicode {x00E5}}\)
\(\def \AA {\unicode {x00C5}}\)
\(\def \o {\unicode {x00F8}}\)
\(\def \O {\unicode {x00D8}}\)
\(\def \l {\unicode {x0142}}\)
\(\def \L {\unicode {x0141}}\)
\(\def \ss {\unicode {x00DF}}\)
\(\def \SS {\unicode {x1E9E}}\)
\(\def \dag {\unicode {x2020}}\)
\(\def \ddag {\unicode {x2021}}\)
\(\def \P {\unicode {x00B6}}\)
\(\def \copyright {\unicode {x00A9}}\)
\(\def \pounds {\unicode {x00A3}}\)
\(\let \LWRref \ref \)
\(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\)
\( \newcommand {\multicolumn }[3]{#3}\)
\(\require {textcomp}\)
\(\newcommand {\intertext }[1]{\text {#1}\notag \\}\)
\(\let \Hat \hat \)
\(\let \Check \check \)
\(\let \Tilde \tilde \)
\(\let \Acute \acute \)
\(\let \Grave \grave \)
\(\let \Dot \dot \)
\(\let \Ddot \ddot \)
\(\let \Breve \breve \)
\(\let \Bar \bar \)
\(\let \Vec \vec \)
\(\require {mathtools}\)
\(\newenvironment {crampedsubarray}[1]{}{}\)
\(\newcommand {\smashoperator }[2][]{#2\limits }\)
\(\newcommand {\SwapAboveDisplaySkip }{}\)
\(\newcommand {\LaTeXunderbrace }[1]{\underbrace {#1}}\)
\(\newcommand {\LaTeXoverbrace }[1]{\overbrace {#1}}\)
\(\newcommand {\LWRmultlined }[1][]{\begin {multline*}}\)
\(\newenvironment {multlined}[1][]{\LWRmultlined }{\end {multline*}}\)
\(\let \LWRorigshoveleft \shoveleft \)
\(\renewcommand {\shoveleft }[1][]{\LWRorigshoveleft }\)
\(\let \LWRorigshoveright \shoveright \)
\(\renewcommand {\shoveright }[1][]{\LWRorigshoveright }\)
\(\newcommand {\shortintertext }[1]{\text {#1}\notag \\}\)
\(\newcommand {\vcentcolon }{\mathrel {\unicode {x2236}}}\)
\(\newcommand {\LWRnicearrayarray }[1]{\begin {array}{#1}}\)
\(\def \LWRnicearrayarrayopt #1[#2] {\begin {array}{#1}}\)
\(\newenvironment {NiceArray}[2][]{\ifnextchar [{\LWRnicearrayarrayopt {#2}}{\LWRnicearrayarray {#2}}}{\end {array}}\)
\(\newcommand {\LWRnicearraywithdelimtwo }[2][]{\ifnextchar [{\LWRnicearrayarrayopt {#2}}{\LWRnicearrayarray {#2}}}\)
\(\newenvironment {NiceArrayWithDelims}[2]{\def \LWRnicearrayrightdelim {\right #2}\left #1\LWRnicearraywithdelimtwo }{\end {array}\LWRnicearrayrightdelim }\)
\(\newenvironment {pNiceArray} {\begin {NiceArrayWithDelims}{(}{)}} {\end {NiceArrayWithDelims}} \)
\(\newenvironment {bNiceArray} {\begin {NiceArrayWithDelims}{[}{]}} {\end {NiceArrayWithDelims}} \)
\(\newenvironment {BNiceArray} {\begin {NiceArrayWithDelims}{\{}{\}}} {\end {NiceArrayWithDelims}} \)
\(\newenvironment {vNiceArray} {\begin {NiceArrayWithDelims}{\vert }{\vert }} {\end {NiceArrayWithDelims}} \)
\(\newenvironment {VNiceArray} {\begin {NiceArrayWithDelims}{\Vert }{\Vert }} {\end {NiceArrayWithDelims}} \)
\(\newenvironment {NiceMatrix}[1][]{\begin {matrix}}{\end {matrix}}\)
\(\newenvironment {pNiceMatrix}[1][]{\begin {pmatrix}}{\end {pmatrix}}\)
\(\newenvironment {bNiceMatrix}[1][]{\begin {bmatrix}}{\end {bmatrix}}\)
\(\newenvironment {BNiceMatrix}[1][]{\begin {Bmatrix}}{\end {Bmatrix}}\)
\(\newenvironment {vNiceMatrix}[1][]{\begin {vmatrix}}{\end {vmatrix}}\)
\(\newenvironment {VNiceMatrix}[1][]{\begin {Vmatrix}}{\end {Vmatrix}}\)
\(\newcommand {\LWRnicematrixBlock }[1]{#1}\)
\(\def \LWRnicematrixBlockopt <#1>#2{#2}\)
\(\newcommand {\Block }[2][]{\ifnextchar <\LWRnicematrixBlockopt \LWRnicematrixBlock }\)
\(\newcommand {\diagbox }[2]{\begin {array}{l}\hfill \quad #2\\\hline #1\quad \hfill \end {array}}\)
\(\let \hdottedline \hdashline \)
\(\newcommand {\Hline }[1][]{\hline }\)
\(\newcommand {\CodeBefore }{}\)
\(\newcommand {\Body }{}\)
\(\newcommand {\CodeAfter }{}\)
\(\newcommand {\line }[3][]{}\)
\(\newcommand {\RowStyle }[2][]{}\)
\(\newcommand {\LWRSubMatrix }[1][]{}\)
\(\newcommand {\SubMatrix }[4]{\LWRSubMatrix }\)
\(\newcommand {\OverBrace }[4][]{}\)
\(\newcommand {\UnderBrace }[4][]{}\)
\(\newcommand {\ShowCellNames }{}\)
\(\newcommand {\cellcolor }[3][]{}\)
\(\newcommand {\rowcolor }[3][]{}\)
\(\newcommand {\LWRrowcolors }[1][]{}\)
\(\newcommand {\rowcolors }[4][]{\LWRrowcolors }\)
\(\newcommand {\rowlistcolors }[3][]{\LWRrowcolors }\)
\(\newcommand {\columncolor }[3][]{}\)
\(\newcommand {\rectanglecolor }[4][]{}\)
\(\newcommand {\arraycolor }[2][]{}\)
\(\newcommand {\chessboardcolors }[3][]{}\)
\(\newcommand {\ldots }[1][]{\dots }\)
\(\newcommand {\Cdots }[1][]{\cdots }\)
\(\newcommand {\Vdots }[1][]{\vdots }\)
\(\newcommand {\Ddots }[1][]{\ddots }\)
\(\newcommand {\Iddots }[1][]{\mathinner {\unicode {x22F0}}}\)
\(\newcommand {\Hdotsfor }[1]{\ldots }\)
\(\newcommand {\Vdotsfor }[1]{\vdots }\)
\(\newcommand {\AutoNiceMatrix }[2]{\text {(AutoNiceMatrix #1)}}\)
\(\let \pAutoNiceMatrix \AutoNiceMatrix \)
\(\let \bAutoNiceMatrix \AutoNiceMatrix \)
\(\let \BAutoNiceMatrix \AutoNiceMatrix \)
\(\let \vAutoNiceMatrix \AutoNiceMatrix \)
\(\let \VAutoNiceMatrix \AutoNiceMatrix \)
\(\renewenvironment {NiceMatrix}{\begin {matrix}}{\end {matrix}}\)
\(\def \myname {\ifnextchar X \found \notfound }\)
\(\newcommand {\cmidrule }[1][]{ \ifnextchar (\LWRbooktabscmidruleparen \LWRbooktabscmidrulenoparen }\)
\(\newcommand {\shortintertext }[1]{ \\ \text {#1} \qquad , }\)
\(\newcommand {\rs }{\text {Rs. }}\)
Contents
4 Simple Interest
4.1 Important Facts and Formulae
4.2 Solved Problems
Chapter 4 Simple Interest
4.1 Important Facts and Formulae
1. Principal : The money borrowed or lent out for a certain period is called the principal or the sum.
2. Interest : Extra money paid for using other’s money is called interest.
3. Simple Interest (S.I.) : If the interest on a sum borrowed for a certain period is reckoned uniformly, then it is called simple interest.
Let Principal \(= P\), Rate \(= R\%\) per annum (p.a.) and Time \(= T\) years. Then,
(i) \(SI = \left (\dfrac {P \times R \times T }{100}\right )\)
(ii) \(P=\left ( \dfrac {100 \times SI}{R \times T} \right ) \); \(R=\left ( \dfrac {100 \times SI}{P \times T} \right ) \); \(T=\left ( \dfrac {100 \times SI}{P \times R} \right ) \);
4.2 Solved Problems
1. Find the simple interest on Rs. 68,000 at \(16 \dfrac {2}{3}\%\) per annum for 9 months.
. Given \(P=\rs 68000, R = 16 \dfrac {2}{3}\% = \dfrac {50}{3}\%\) and \(T = 9 \) months \(=\dfrac {9}{12}\) years \(= \dfrac {3}{4} \) years.
\(SI= \dfrac {P \times R \times T }{100} = \rs \left ( 68000 \times \dfrac {50}{3} \times \dfrac {3}{4} \times \dfrac {1}{100} \right ) = \rs 8500 \)
2. Find the simple interest on Rs. 3000 at \(6 \dfrac {1}{4}\%\) per annum for the period from 4th Feb., 2005 to 18th April, 2005.
. Given \(P=\rs 3000\), \(R= 6\dfrac {1}{4}\% p.a = \dfrac {25}{4}\% p.a\)
Time \(= (24+31+18) \) days = 73 days \(= \dfrac {73}{365} \) year \(=\dfrac {1}{5}\) year.
\(SI= \rs \left ( 3000 \times \dfrac {25}{4} \times \dfrac {1}{5} \times \dfrac {1}{100} \right ) = \rs 37.50 \)
Remark : The day on which money is deposited is not counted while the day on which money is withdrawn is counted.
3. A sum at simple interests at \(13\dfrac {1}{2}\%\) per annum amounts to Rs.2502.50 after 4 years find the sum.
. Let sum be \(\rs x\). Then,
\(SI=\rs \left ( x \times \dfrac {27}{2} \times 4 \times \dfrac {1}{100} \right ) = \rs \dfrac {27x}{50} \)
Amount \(= \rs \left ( x+ \dfrac {27x }{50} \right ) = \rs \dfrac {77x}{50}\)
\(\dfrac { 77x}{50} = 2502.50 \Leftrightarrow x = \dfrac { 2502.50 \times 50 }{77} = 1625\) Hence, sum = Rs.1625.
4. A sum of Rs. 800 amounts to Rs. 920 in 8 years at simple interest rate is increased by 8%, it would amount to bow much ?
. \(SI = \rs (920 - 800) = \rs 120\); \(P = Rs. 800,\) \(T = 3\) years.
\(R = \left ( \dfrac {100 \times 120}{800 \times 3} \right )\% = 5\%\).
New rate \(= (5 + 3)\% = 8\%\).
New \(SI = \rs \left ( \dfrac { 800 \times 8 \times 3}{100}\right ) =\rs 192.\)
New amount \(= \rs (800+192) = \rs 992.\)
5. Adam borrowed some money at the rate of 6% p.a. for the first two years, at the rate of 9% p.a. for the next three years , and at the rate of 14% p.a. for the period beyond five years. If he pays a total interest of Rs. 11, 400 at the end of nine years how much money did
he borrow ?
. Let the sum borrowed be \(x\). Then,
\(\left ( \dfrac { x\times 2\times 6}{100 }\right ) + \left ( \dfrac { x\times 9\times 3}{100} \right ) + \left ( \dfrac { x\times 14\times 4}{100}\right ) = 11400\)
\(\Leftrightarrow \left ( \dfrac { 3x}{25} + \dfrac { 27x}{100} + \dfrac { 14x }{ 25}\right ) = 11400 \)
\(\Leftrightarrow \dfrac {95x}{100 }= 11400 \Leftrightarrow x = \left ( \dfrac { 11400\times 100}{95}\right ) = 12000.\)
Hence, sum borrowed = Rs. 12,000.
6. A certain sum of money amounts to Rs. 1008 in 2 years and to Rs.1164 in \(3 \dfrac {1}{2}\) years. Find the sum and rate of interests.
. SI for \(1 \dfrac {1}{2}\) years = Rs.(1164-1008) = Rs.156.
SI for 2 years = Rs.\(\left ( 156 \times \dfrac { 2}{3} \times 2\right )=Rs.208\)
Principal = Rs. (1008 - 208) = Rs. 800.
Now, P = 800, T = 2 and SI = 208.
Rate \(= \left ( \dfrac { 100 \times 208}{800 \times 2}\right )\% = 13\%\)
7. At what rate percent per annum will a sum of money double in 16 years.
. Let principal = P. Then, SI = P and T = 16 years.
Rate \(= \left ( \dfrac { 100 \times P}{P \times 16}\right )\% = 6 \dfrac {1}{4} \%\) p.a.
8. The simple interest on a sum of money is \(\dfrac {4}{9}\) of the principal. Find the rate percent and time, if both are numerically equal.
. Let sum = Rs. \(x\). Then, SI = Rs. \(\dfrac { 4x}{9}\)
Let rate = R% and time = R years.
Then, \(\left ( \dfrac { x\times R \times R}{100}\right )= \dfrac { 4x}{9}\) or \(R^2 = \dfrac { 400}{9}\) or \(R = \dfrac {20}{3} = 6 \dfrac { 2}{3}.\)
Rate \(= 6 \dfrac {2}{3}\%\) and Time \(= 6 \dfrac {2}{3}\) years = 6 years 8 months.
9. The simple interest on a certain sum of money for \(2 \dfrac {1}{2}\) years at 12% per annum is Rs. 40 less than the simple interest on the same sum for \(3 \dfrac {1}{2}\) years at 10% per annum. Find the sum.
. Let the sum be Rs. x Then, \(\left (\dfrac { x\times 10\times 7}{100\times 2} \right )) âĂŞ\left ( \dfrac {x\times 12\times 5}{100\times 2}\right ) = 40\)
\(\Leftrightarrow \dfrac {7x}{20}-\dfrac {3x}{10}=40 \Leftrightarrow x = (40 \times 20) = 800.\)
Hence, the sum is Rs. 800.
10. A sum was put at simple interest at a certain rate for 3 years. Had it been put at 2% higher rate, it would have fetched Rs. 360 more. Find the sum.
. Let sum = P and original rate = R. Then, \(\left [\dfrac { P\times (R+2)\times 3}{100}\right ] - \left [\dfrac { P\times R\times 3}{100}\right ] = 360.\)
\(\Leftrightarrow 3PR + 6P - 3PR = 36000 \Leftrightarrow 6P=36000 \Leftrightarrow P=6000\).
Hence, sum = Rs. 6000.
11. What annual instalment will discharge a debt of Rs. 1092 due in 3 years at 12% simple interest?
. Let each Instalment be Rs. \(x\). Then,
\(\left ( x+ \dfrac { x\times 12\times 1}{100} \right ) + \left (x+ \dfrac {x\times 12\times 2}{100}\right ) + x = 1092\)
\(\Leftrightarrow \dfrac {28x}{25} + \dfrac {31x}{25} + x = 1092 \Leftrightarrow (28x+31x+25x)=(1092\times 25)\)
\(\Leftrightarrow x= \left ( \dfrac { 1092\times 25}{84}\right ) = \rs .325. \) Each instalment = Rs. 325.
12. A sum of Rs. 1550 is lent out into two parts, one at 8% and another one at 6%. If the total annual income is Rs. 106, find the money lent at each rate.
. Let the sum lent at 8% be Rs. x and that at 6% be Rs. \((1550 - x)\).
\(\left [ \dfrac {x\times 8\times 1}{100}\right ] + \left [\dfrac { (1550-x)\times 6\times 1}{100}\right ]=106\)
\(\Leftrightarrow 8x + 9300 âĂŞ6x=10600 \Leftrightarrow 2x = 1300 \Leftrightarrow x = 650.\)
Money lent at 8% = Rs. 650.
Money lent at 6% = Rs. (1550 - 650) = Rs. 900.
0 Comments