ARO Typography Center

SKILL BASED ELECTIVE COURSE – VI LaTeX PRACTICAL 5 to Type a given Mathematical expression using Differentiation, Integration and Trigonometry.

Prac5

The minimal working working example is gievn below to Type a given Mathematical expression using Differentiation, Integration and Trigonometry.

\documentclass[12pt, a4]{article}
\usepackage{amsmath,amssymb} 
 
\begin{document}
Integration : 


Solve $ \int x^2 dx = \frac{x^3}{3} + c $

$$ \int _{a} ^{b} x^2 dx = \frac{x^3}{3} + c $$

$$ \iint f(x) dx  $$

$$ \oint f(z) dz  $$


Differentiation :

Solve $ \frac{dy}{dx} - x y =x $

$$ \frac{dy}{dx} - x y =x $$

$$ \frac{\partial y}{\partial x } $$

Trigonometry:

$$\sin x + \cos x  $$

$$\sin^2 x  + \cos ^2 x = 1 $$
\end{document}

The output would be

Integration :

Solve \(\int x^2 dx = \frac {x^3}{3} + c \)

\[ \int _{a} ^{b} x^2 dx = \frac {x^3}{3} + c \]

\[ \iint f(x) dx \]

\[ \oint f(z) dz \]

Differentiation :

Solve \(\frac {dy}{dx} - x y =x \)

\[ \frac {dy}{dx} - x y =x \]

\[ \frac {\partial y}{\partial x } \]

Trigonometry:

\[\sin x + \cos x \]

\[\sin ^2 x + \cos ^2 x = 1 \]

For more clarification see the video which is given below

Post a Comment

0 Comments

/* MCQ Temp */