ARO Typography Center

MKU University B.Sc., Mathematics SMTJA51 Fourier Series and Laplace Transform Chapter 1

Table of Contents

Chapter 1
Fourier Series

In this chapter we discuss the basic concepts relating to Fourier series and obtain Fourier series development of several functions.

1.1 Periodic Functions

Definition 1.1.1. A function f : R R is said to be periodic if there exists a positive number ω such that f (x+ω) =f (x) for all real numbers x and ω is called a period of f. If a periodic function has a smallest positive period ω, then ω is called the primitive period of f.

Example 1.1.2. The trigonometric functions sin x and cos x are periodic functions with primitive period 2Ï€ [since sin (x+ 2Ï€) = sin x and cos (x+ 2Ï€) = cos x].

Example 1.1.3. sin 2x and cos 2x are periodic functions with primitive period π each.

Example 1.1.4. The constant function f (x) =c is a periodic function. In fact every positive real number is a period of f and hence this periodic function has no primitive period.

Example 1.1.5. Let f : R R be a function defined by

f (x) = {0, if x is rational  1, if x is irrational 

Let ω be any rational number. If x is rational then x+ω is also rational and if x is irrational then x+ω is also irrational. Hence

f (x+ω) = {0, if x is rational  1, if x is irrational  =f (x)

Hence every rational number is a period of f and f has no primitive period.

Remark 1.1.6. Let f be a periodic function with period ω. If the values of f (x) we known in an interval of length ω, then by periodicity f (x) can be determined for all x. Hence the graph of a periodic function is obtained by periodic function of its graph in any interval of length ω.

Example 1.1.7. The graph of the periodic function f (x) = sin x and f (x) = cos x is given below in

Figure 1.1: 

Example 1.1.8. Let f be the periodic function defined by

f (x) = {1 if  Ï€x< 0 1  if  0 x < Ï€  and f (x+2Ï€) =f (x).

The graph of the periodic function sin x is given below in Figure 1.2

Figure 1.2: 

Example 1.1.9. Let f be a periodic function defined by f (x) = {x if  Ï€<x<Ï€ and  f (x +2Ï€) = f (x) (i.e) f (x) =x if Ï€<x<Ï€ and f (x+ 2Ï€) =f (x).

The graph of the periodic function sin x is given below in Figure 1.3.

Figure 1.3: 

Solved Problems

Problem 1.1.10. Let f and g be periodic functions with period ω each and let a and b be real numbers. Prove that af+bg is also a periodic function with period ω.

Solution. Since f and g are periodic functions with period ω each we have for all x,

f (x+ω) =f (x) and  (1.1) g(x+ω) =g(x) (1.2)

Now,

(af+bg)(x+ω) =af (x+ω) +bg(x+ω) =af (x) +bg(x) (by (1.1) and (1.2 = (af+bg)(x)

Hence af+bg is a periodic functions with period ω.

Problem 1.1.11. If ω is a period of f prove that nω is also a period of f where n is any positive integer.

Solution. Let n be any positive integer. Since ω is a period of f we have

f (x) =f (x+ω).

Using this fact repeatedly we have

f (x) =f (x+ω) =f (x+ 2ω) =f (x+ (n 1)ω) =f (x+nω)

It follows that nω is a period of f.

Problem 1.1.12. Let n be any positive integer. Prove that sin nx is a periodic function with period 2Ï€ n .

Solution. Since sin x is a periodic function with period 2Ï€. We have

sin (x+ 2pi) = sin x for all x.

Now, let g(x) = sin nx. Then

g (x+ 2Ï€ n ) = sin [n (x+ 2Ï€ n )] = sin (nx+ 2Ï€) = sin nx =gx

Hence sin nx is a periodic function with period 2Ï€ n .

Problem 1.1.13. Let f (x) be a periodic function with period ω. Prove that for any positive real number a,f (ax) is a periodic function with period ω.

Solution. Since f (x) is a periodic function with period ω, we have

f (x+ω) =f (x)x.

Let g(x) =f (ax). Now,

g (x+ω a) =f [a (x+ω a)] =f (ax+ω) =f (ax) =g(x)

Hence g(x) is a periodic function with period ω a.

1.2 Fourier Series - Full Range

In this section we are going to discuss the problem of representing various functions of period 2Ï€ (Full range) in terms of the simple functions namely constant function c and some trigonometric functions sin x,cos x,sin 2x,cos 2x, ,sin nx, cos nx etc.

Definition 1.2.1 (Trigonometric Series). A series of the form

a0 +a1 cos x+b1 sin x+a2 cos 2x+b2 sin 2x+ +ancos nx+bnsin x+ =a0 +∑︁ n=1 (a ncos nx+bnsin nx)

where an and bn are real constants is called a trigonometric series, an and bn are called the coefficients of the series (Fourier coefficients).

Since each term of the trigonometric series is a function of period 2Ï€ it follows that if the series converges then the sum is also a function of period 2Ï€.

Definition 1.2.2 (Fourier series). Let f (x) be a periodic function with period 2Ï€. Suppose f (x) can be represented as a trigonometric series

f (x) =a0 2 +∑︁ n=1 (a ncos nx+bnsin nx) (1.3)

where,

a0 = 1 πππf (x)dx an = 1 πππf (x)cos nxdx n= 1,2,3, bn = 1 πππf (x)sin nxdx n= 1,2,3,

Remark 1.2.3. The formulae for the coefficients a0,an,bn given in the above definition are known as Euler’s Formulae.

Remark 1.2.4. If f (x) is a periodic function with period 2Ï€ we can obtain the Fourier Series of f (x) in any interval of length 2Ï€. If the interval is taken as (c,c+ 2Ï€) then the Euler’s Formulae for Fourier coefficients are given by

a0 = 1 πcc+2πf (x)dx an = 1 πcc+2πf (x)cos nxdx n= 1,2,3, bn = 1 πcc+2πf (x)sin nxdx n= 1,2,3,

Definition 1.2.5. A real function f (x) is called an even function if f (x) =f (x) for all x.
The function f (x) is called an odd function if f (x) =f (x).

Example 1.2.6.

  1. cos nx is an even function.
  2. sin nx is an odd function.
  3. xn is an odd function if n is an odd integer and an even function if n is an even integer.

Remark 1.2.7.

  1. If f (x) is an even function aaf (x)dx= 20af (x)dx.
  2. If f (x) is an even function aaf (x)dx= 0.

Remark 1.2.8.

  1. The product of two even functions is an even function.
  2. The product of two odd functions is an even function.
  3. The product of an even function and an odd function is an odd function.

Remark 1.2.9. If f (x) is an odd function then f (x)cos nx is also an odd function. Hence

a0 = 1 πππf (x)dx= 0 and a n= 1 Ï€xÏ€f (x)cos nxdx= 0.

Thus for an odd function the Fourier coefficients a0 and an are zero. Also

bn= 1 πππf (x)sin nxdx= 2 π0πf (x)sin nxdx

(Since f (x)sin nx is an even function.)

Remark 1.2.10. If f (x) is an even function then f (x)sin nx is an odd function. Hence

bn= 1 πππf (x)sin nxdx= 0n.

Using the above remarks, working rules for calculating the Fourier coefficients of a periodic function with period 2Ï€ is given below.

Working Rules

Let f (x) be a periodic function with period 2Ï€. Suppose the given interval is (Ï€,Ï€).

  1. Check whether f (x) is an even function or an odd function.
    1. If f (x) is an even function then bn= 0 for all n and

      an= 2 Ï€0Ï€f (x)cos nxdx for all n 0

    2. If f (x) is an odd function then an= 0 for all n 0 and

      bn= 2 π0πf (x)sin nxdx

  2. If f (x) is neither an even function nor an odd function in (Ï€,Ï€) or if the given interval is not (Ï€,Ï€), then calculate the Fourier coefficients by using Euler’s formulae.

The following results on integration will be useful in calculating the Fourier coefficients.

Result 1.2.11 (Bernoulli’s formula).

udv =uvuv 1 +u′′v 2 u′′v 3 + where  u =du dx,u=d2u dx2 ,u=d3u dx3  etc., and  v1 =vdx,v2 =v1dx,v3 =v2dx, etc., 

Result 1.2.12.

  1. eaxsin bxdx= eax a2 +b2 [asin bxbcos bx]
  2. ear cos bxdx= eax a2 +b2 [acos bx+bsin bx].

Result 1.2.13. Now let g(x) = sin nx. Then

g (x+ 2Ï€ n ) = sin [n (x+ 2Ï€ n )] = sin (nx+ 2Ï€) = sin nx=g(x)

Hence g(x) = sin nx is a periodic function with period 2Ï€ n where n is a positive integer.

Solved Problems

Problem 1.2.14. Determine the Fourier expansion of the function f (x) =x where πxπ.

Solution. Given that f (x) is a period function so I have to use the formula

f (x) =a0 2 +∑︁ n=1 (a ncos (nx) +bnsin (nx) )

where,

a0 = 1 πππf (x)dx an = 1 πππf (x)cos (nx)dx bn = 1 πππf (x)sin (nx)dx

Obviously f (x) =x is an odd function.
Hence an= 0 for all n 0. Now,

bn = 2 πππf (x)sin nxdx = 2 πππxsin nxdx

Taking u=x and dv= sin nxdx and applying Bernoulli’s formula (Result 1.2.11) we get

bn = 2 π [xcos nx n +sin nx n2 ] 0π = 2 nπ[πcos nπ] =2(1)n n = 2(1)n+1 n

Hence

f (x) =x =∑︁ n=1(1)n+1 ( 2 n)sin nx x = 2 [sin x 1 sin 2x 2 +sin 3x 3 +]

Problem 1.2.15. Find the Fourier series for the function f (x) =x2 where πxπ and deduce that

  1. 1 12 + 1 22 + 1 32 +=Ï€2 6
  2. 1 12 1 22 + 1 32 .=Ï€2 12
  3. 1 12 + 1 32 + 1 52 .=Ï€2 8 .

Solution. Let f (x) =x2. We note that f (x) is an even function. Hence,

a0 = 1 ππxf (x)dx= 1 πππx2dx = 2 Ï€0Ï€x2dx(x2 is an even function) = 2 Ï€ [x3 3 ]0Ï€= 2Ï€2 3

Now,

an = 1 πππf (x)cos nxdx = 1 πππx2 cos nxdx = 2 Ï€0Ï€x2 cos nxdx (since x2 cos nx is an even function.)

Now by applying the Bernoulli’s formula

udv=uvuv 1 +u′′v 2

where u=x2 and dv= cos nxdx so that u= 2x;u′′= 2;u= 0.

an = 2 Ï€ [2Ï€cos nÏ€ n2 ] 0Ï€= 4(1)n n2 bn = 1 πππf (x)sin nxdx= 1 πππx2 sin nxdx = 0 (since x2 sin nx is an odd function).

Hence

x2 =Ï€2 3 + 4∑︁ n=1 ((1)ncos nx n2 ) (1.4)

Deduction. 1 Put x=Ï€ in (1.4) and we get

Ï€2 =Ï€2 3 + 4∑︁ n=1 ((1)ncos nÏ€ n2 ) Ï€2 =Ï€2 3 + 4 ( 1 12 + 1 22 + 1 32 ++ 1 n2 +) 4 ( 1 12 + 1 22 + 1 32 ++ 1 n2 +) =Ï€2 Ï€2 3 =2Ï€2 3 ( 1 12 + 1 22 + 1 32 ++ 1 32 +) =Ï€2 6

Deduction. 2 Put x= 0 in (1.4) and we get

0 =Ï€2 3 + 4 (1 12 + 1 22 1 32 ++ 1 n2 +) 1 12 1 22 + 1 32 =Ï€2 12

Deduction. 3 Adding the results of Deduction.1 and Deduction.2 we get

2 ( 1 12 + 1 32 + 1 52 +) =Ï€2 4 ( 1 12 + 1 32 + 1 52 +) =Ï€2 8

Problem 1.2.16. Show that in the range 0 to 2Ï€ the Fourier series expansion for ex is

e2Ï€ 1 Ï€ [1 2 +∑︁ n=1 (cos nx n2 + 1 ) ∑︁ n=1 (nsin nx n2 + 1 )]

Solution. Let f (x) =ex.

a0 =1 π02πf (x)dx =1 π02πexdx =1 π [ex] 02π =e2π 1 π

Now taking,

In =02πexcos nxdx = [excos nx] 02π+n02πexsin nxdx = (e2π 1) +n [ {exsin nx} 02πn02πexcos nxdx] In = (e2π 1) n2I n (n2 + 1)I n =e2π 1 In = (e2π 1 n2 + 1 ) an =1 π (e2π 1 n2 + 1 )

Similarly we can prove that

bn = (n (e2x 1) Ï€ (n2 + 1) ) f (x) =ex =a0 2 +∑︁ n=1 (a ncos (nx) +bnsin (nx) ) ex =e2Ï€ 1 Ï€ [1 2 +∑︁ n=1cos nx n2 + 1 ∑︁ n=1nsin nx n2 + 1 ]

Problem 1.2.17. If f (x) = {x if  Ï€<x< 0 x  if  0 < x < Ï€ expand f (x) as a Fourier series in the interval (Ï€,Ï€).

Solution. Clearly f (x) =f (x) for all x (Ï€,Ï€). Hence f (x) is an even function in (Ï€,Ï€). bn= 0. Hence the function can be expanded as a Fourier series of the form

a0 2 +∑︁ n=1a ncos nx where a0 =1 πππf (x)dx.

Now,

a0 =1 ππxf (x)dx=2 Ï€0Ï€f (x)dx (since f (x) is an even function.) =2 Ï€0nxdx=2 Ï€ [x2 2 ]0Ï€=2 Ï€ [Ï€2 2 ] =Ï€ an =2 Ï€0Ï€xcos nxdx =2 Ï€ [xsin nx n ]0Ï€ 2 nÏ€0Ï€sin nxdx = 2 Ï€n2 [cos nx]0Ï€ = 2 Ï€n2 [(1)n 1] = { 4 Ï€n2  if n is odd  0  if n is even 

Hence,

f (x) =Ï€ 2 4 Ï€∑︁ (cos nx n2 )  where n is odd. f (x) =Ï€ 2 4 Ï€ [cos x 12 +cos 3x 32 +cos 5x 52 +]

Note 1.2.18. This problem can also be re stated as f (x) =|x| in the interval π<x<π.

Problem 1.2.19. Find the Fourier series of the function

f (x) = {Ï€+ 2x if  Ï€<x< 0 Ï€2x  if  0 x < Ï€

Hence deduce that

1 12 + 1 32 + 1 52 +=Ï€2 8 .

Solution. Here the given function is f (x) =Ï€ 2|x| and hence it is an even function. Hence bn= 0 for all n. Now,

a0 =2 π0π(π 2x)dx =1 π [ (π 2x)2 ] 0π =1 π [(π)2 π2 ] = 0

Also

an =2 Ï€0x(Ï€ 2x)cos nxdx = 2 Ï€ [(Ï€ 2x)sin nx n ]0Ï€+ 4 Ï€0Ï€sin nxdx = 0 + 4 Ï€n2 [cos nx]0Ï€ = 4 Ï€n2 [cos nx]0Ï€ = 4 Ï€n2 [(1)n+ 1] = {0  if n is odd  8 Ï€n2  if n is even  f (x) =8 Ï€∑︁ n=1 (cos (2n 1)Ï€ (2n 1)2 )

Putting x= 0 in the above result we get

f (0) =8 Ï€ [1 12 + 1 32 + 1 52 +] Ï€ =8 Ï€ [1 12 + 1 32 + 1 52 +](f (0) =Ï€,from given condition)  1 12 + 1 32 + 1 52 + =Ï€2 8 .

Problem 1.2.20. Find the Fourier series for f (x) =|sin x| in (Ï€,Ï€) of periodicity 2Ï€.

Solution. We note that f (x) =|sin x| is an even function of x though sin x is an odd function. bn= 0. Hence f (x) will contain only cosine terms in its Fourier series.

f (x) =a0 2 +∑︁ n=1a ncos nx.

Now,

a0 =1 πππ|sin x|dx =2 Ï€0Ï€|sin xdx (since |sin x| is an even function.) =2 Ï€0Ï€sin xdx =2 Ï€[cos x]0Ï€ =2 Ï€[1 + 1] a0 =4 Ï€

Now,

an =1 πππ|sin x|cos nxdx an =1 ππ0|sin x|cos nxdx+1 Ï€0n|sin x|cos nxdx =2 Ï€0Ï€sin xcos nxdx(f (x) =|sin x|= sin x [Ï€,Ï€]) =1 Ï€0Ï€[sin (n+ 1)x sin (n 1)x]dx =1 Ï€ [cos (n+ 1)x n+ 1 +cos (n 1)x n 1 ]0Ï€ if n1 =1 Ï€ [ 1 n+ 1 | {(1)n+1 1}| + 1 n 1 {(1)n1 1}] =1 Ï€ [ 1 n+ 1 {1 + (1)n} 1 n 1 {1 + (1)n}] =1 Ï€ ( 2 n2 1 ) {1 + (1)n}

For n> 1,

an= {0  if n is odd  4 Ï€(n2 1) if n is even and n1

If n= 1,

a1 =2 Ï€0Ï€sin xcos xdx =2 Ï€0Ï€sin xd(sin x) =2 Ï€ [sin 2x 2 ]0Ï€ a1 = 0 f (x) =|sin x|=2 Ï€4 Ï€∑︁ n=1cos 2nx (4n2 1) =2 Ï€4 Ï€∑︁ n=1 cos 2nx (2n 1)(2n+ 1) |sin x| =2 Ï€4 Ï€∑︁ n=1 [ cos 2nx (2n 1)(2n+ 1) ]

Problem 1.2.21. If f (x) = {Ï€ 4  if  pi<x< 0 Ï€ 4  if 0 <x<Ï€ . Find the Fourier Series of f (x) with period 2Ï€.

Solution. We note that f (x) is a periodic function with period 2Ï€. Now,

a0 =1 πππf (x)dx =1 ππ0 (π 4 )dx+1 π0x (π 4 )dx =1 π [ (π 4 )[x]π0 ] +1 π [ (π 4 )[x]0π] =1 π (π 4 )(π) +1 π (π 4 )π =π 4 +π 4 a0 = 0

Now,

an =1 πππf (x)cos nxdx =π0 (π 4 )cos nxdx+0π (π 4 )cos nxdx =π 4 [sin nx n ]π0 +π 4 [sin nx n ]0π =π 4 [0 0] +π 4 [0 0] an = 0

Now, for n> 1

bn = 1 πππf (x)sin nxdx = 1 Ï€ [Ï€0 (Ï€ 4 )sin nxdx+0Ï€ (Ï€ 4 )sin nxdx] = 1 ππ 4 [Ï€0 sin nxdx+0Ï€sin nxdx] = 1 4 [0Ï€sin nxdx+0Ï€sin nxdx] = 1 4 ( [cos nx n ]0Ï€+ [cos nx n ]0Ï€) = 1 4n [0Ï€sin nxdx+0Ï€sin nxdx] = 1 4n ( [cos nx]0Ï€+ [cos nx] 0Ï€) = 1 4n (cos nÏ€+ 1 cos nÏ€+ 1) = 1 4n (2 2cos nÏ€) = 1 cos nÏ€ 2n bn = 1 (1)n 2n bn = { 1 n if n is odd  0  if n is even 

Hence,

f (x) = sin x+ 1 3sin 3x+ 1 5sin 5x+

Problem 1.2.22. Find the Fourier series for defined in f (x) =ex defined in [Ï€,Ï€].

Solution. The Fourier series is given as

f (x) =a0 2 +∑︁ n=1 (a ncos (nx) +bnsin (nx))

a0 =1 πππex dx =1 Ï€ ( ex| ππ) =1 Ï€ (eÏ€eÏ€) a0 =2sinh (Ï€) Ï€ an =1 πππexcos (nx)dx = 1 nπππex d(sin (nx)) = 1 nÏ€ ( exsin (nx)| ππππexsin (nx)dx) an = 1 nÏ€ (eÏ€sin (nÏ€) eÏ€sin (nÏ€) +1 nππex d(cos (nx))) sin (nÏ€) = 0nZ an = 1 nÏ€ (1 nππex d(cos (nx))) = 1 n2Ï€ ( excos (nx)| ππππexcos (nx)dx) = 1 n2Ï€ (eÏ€cos (nÏ€) eÏ€cos (nÏ€) Ï€a n) cos (nÏ€) = (1)nnZ an = 1 n2Ï€ ( (eÏ€eÏ€)(1)nÏ€a n) = 1 n2Ï€ (2sinh (Ï€)(1)nÏ€a n) an+an 1 n2 =2sinh (Ï€)(1)n n2Ï€ an (1 +n2 n2 ) =2sinh (Ï€)(1)n n2Ï€ an =2sinh (Ï€)(1)n (n2 + 1)Ï€ bn =1 πππexsin (nx)dx = 1 nπππex d(cos (nx)) = 1 nÏ€ ( excos (nx)| ππππexcos (nx)dx) = 1 nÏ€ (eÏ€cos (nÏ€) eÏ€cos (nÏ€) ππexcos (nx)dx) = 1 nÏ€ (2sinh (Ï€)(1)nππexcos (nx)dx) = 1 nÏ€ (2sinh (Ï€)(1)nÏ€a n) =2sinh (Ï€)(1)n nÏ€ +an n =2sinh (Ï€)(1)n nÏ€ +2sinh (Ï€)(1)n n (n2 + 1)Ï€ =2sinh (Ï€)(1)n nÏ€ (1 + 1 n2 + 1 ) bn =2n(1)n+1 sinh (Ï€) (n2 + 1)Ï€

The Fourier series for the function is

f (x) =sinh (Ï€) Ï€ + 2∑︁ n=1(1)nsinh (Ï€) Ï€ (cos (nx) n2 + 1 nsin (nx) n2 + 1 )

Post a Comment

0 Comments

/* MCQ Temp */