Loading web-font TeX/Math/Italic

ARO Typography Center

Find the Laplace of following L(t^2 + \cos 2t \cos t + \sin ^2 2t)

To find the Laplace transform of the given function f(t)=t2+cos(2t)cos(t)+sin2(2t)f(t) = t^2 + \cos(2t)\cos(t) + \sin^2(2t), we’ll break it down into individual terms and use the linearity property of the Laplace transform. The Laplace transform of a sum is the sum of the Laplace transforms of the individual terms. Here’s the step-by-step solution:

  1. Laplace Transform of t2t^2: The Laplace transform of tnt^n is n!sn+1\dfrac{n!}{s^{n+1}}, where nn is a non-negative integer. In this case, n=2n = 2. â„’{t2}=2!s2+1=2s3\mathcal{L}\{t^2\} = \dfrac{2!}{s^{2+1}} = \dfrac{2}{s^3}

  2. Laplace Transform of cos(2t)cos(t)\cos(2t)\cos(t): Use the trigonometric identity cos(A)cos(B)=12[cos(A+B)+cos(A−B)]\cos(A)\cos(B) = \dfrac{1}{2}[\cos(A + B) + \cos(A - B)]. cos(2t)cos(t)=12[cos(2t+t)+cos(2t−t)]=12[cos(3t)+cos(t)]\cos(2t)\cos(t) = \dfrac{1}{2}[\cos(2t + t) + \cos(2t - t)] = \dfrac{1}{2}[\cos(3t) + \cos(t)]

    Now, we’ll take the Laplace transform of both terms: ℒ{12[cos(3t)+cos(t)]}=12(ℒ{cos(3t)}+ℒ{cos(t)})\mathcal{L}\left\{\dfrac{1}{2}[\cos(3t) + \cos(t)]\right\} = \dfrac{1}{2} \left(\mathcal{L}\{\cos(3t)\} + \mathcal{L}\{\cos(t)\}\right)

    The Laplace transform of cos(at)\cos(at) is ss2+a2\dfrac{s}{s^2 + a^2}, so: â„’{cos(3t)}=ss2+32=ss2+9\mathcal{L}\{\cos(3t)\} = \dfrac{s}{s^2 + 3^2} = \dfrac{s}{s^2 + 9} â„’{cos(t)}=ss2+12=ss2+1\mathcal{L}\{\cos(t)\} = \dfrac{s}{s^2 + 1^2} = \dfrac{s}{s^2 + 1}

    Putting it all together: â„’{12[cos(3t)+cos(t)]}=12(ss2+9+ss2+1)\mathcal{L}\left\{\dfrac{1}{2}[\cos(3t) + \cos(t)]\right\} = \dfrac{1}{2} \left(\dfrac{s}{s^2 + 9} + \dfrac{s}{s^2 + 1}\right)

  3. Laplace Transform of sin2(2t)\sin^2(2t): The Laplace transform of sin2(at)\sin^2(at) can be found using a trigonometric identity and the Laplace transform of sin(at)\sin(at). The identity is sin2(A)=12(1−cos(2A))\sin^2(A) = \dfrac{1}{2}(1 - \cos(2A)). sin2(2t)=12(1−cos(4t))\sin^2(2t) = \dfrac{1}{2}(1 - \cos(4t))

    Now, we’ll take the Laplace transform of both terms: ℒ{12(1−cos(4t))}=12(ℒ{1}−ℒ{cos(4t)})\mathcal{L}\left\{\dfrac{1}{2}(1 - \cos(4t))\right\} = \dfrac{1}{2} \left(\mathcal{L}\{1\} - \mathcal{L}\{\cos(4t)\}\right)

    The Laplace transform of the constant function 1 is 1s\dfrac{1}{s}. â„’{1}=1s\mathcal{L}\{1\} = \dfrac{1}{s}

    The Laplace transform of cos(at)\cos(at) is ss2+a2\dfrac{s}{s^2 + a^2}, so: â„’{cos(4t)}=ss2+42=ss2+16\mathcal{L}\{\cos(4t)\} = \dfrac{s}{s^2 + 4^2} = \dfrac{s}{s^2 + 16}

    Putting it all together: ℒ{12(1−cos(4t))}=12(1s−ss2+16)\mathcal{L}\left\{\dfrac{1}{2}(1 - \cos(4t))\right\} = \dfrac{1}{2} \left(\dfrac{1}{s} - \dfrac{s}{s^2 + 16}\right)

Now, we can add up all these Laplace transforms to find the Laplace transform of the original function f(t)f(t):

ℒ{f(t)}=ℒ{t2}+ℒ{12[cos(3t)+cos(t)]}+ℒ{12(1−cos(4t))}=2s3+12(ss2+9+ss2+1)+12(1s−ss2+16)\begin{aligned} \mathcal{L}\{f(t)\} &= \mathcal{L}\{t^2\} + \mathcal{L}\{\dfrac{1}{2}[\cos(3t) + \cos(t)]\} + \mathcal{L}\{\dfrac{1}{2}(1 - \cos(4t))\} \\ &= \dfrac{2}{s^3} + \dfrac{1}{2} \left(\dfrac{s}{s^2 + 9} + \dfrac{s}{s^2 + 1}\right) + \dfrac{1}{2} \left(\dfrac{1}{s} - \dfrac{s}{s^2 + 16}\right) \end{aligned}

Post a Comment

0 Comments

/* MCQ Temp */